朋友圈广告再翻车:传欧盟与英国接近达成脱欧协议 英镑攀升 英债下跌

发布时间:2019年12月10日 15:23 编辑:丁琼
或许就像王朔说的一样:“其实成名真的挺容易,你稍微认真一点就比别人强,整个社会水准都不高,空白点非常多。”惊蛰

AlphaGo有可能在这几个月突飞猛进,进而击败李世乭吗?AlphaGo的负责人说:”外界不知道我们这几个月进步了非常多“。(来自:Odds favor machine over human in big Go showdown )。这点确实有可能。AlphaGo进步的方法有两个:(1)增加硬件:我们从Nature的文章可以看到:从1202个CPU到1920个CPU,AlphaGo的ELO只增加了28,而且线性地增加CPU,不会看到线性的ELO成长。若要达到364 ELO积分的提升,需要的CPU将达到天文数字(有篇文章估计至少要10万个CPU:AlphaGo and AI Progress)。当然,谷歌有钱有机器,但是纯粹加机器将会碰到并行计算互相协调的瓶颈(就是说假设有十万万台机器,它们的总计算能力很强,但是彼此的协调将成为瓶颈)。在几个月之内增加两个数量级的CPU并调节算法,降低瓶颈,应该不容易。(2)增加学习功能:AlphaGo有两种学习功能,第一种是根据高手棋谱的学习,第二种是自我对弈,自我学习。前者已经使用了16万次高手比赛,而后者也在巨大机组上训练了8天。这方面肯定会有进步,但是要超越世界冠军可能不容易。最后,换一种分析方式:如果从过去深蓝击败世界冠军的“成长过程”来看,深蓝大约1993年达到职业大师水平,4年后才在一场六盘的比赛中击败世界冠军(大约500Elo积分点的提升)。今天的AlphaGo应该和1993年的深蓝相似,刚进入职业大师水平。若要击败世界冠军,虽然未必需要4年的时间,但是几个月似乎不够。曼联战胜曼城

虽然神经网络在几十年前就有了,直到最近才形势明朗。这是因为他们需要大量的“训练”去发现矩阵中的数字价值。对早期研究者来说,想要获得不错效果的最小量训练都远远超过计算能力和能提供的数据的大小。但最近几年,一些能获取海量资源的团队重现挖掘神经网络,就是通过“大数据”技术来高效训练。乔碧萝自称患抑郁

网易科技:欢迎再次接受网易科技的访谈。自从去年北京国际通信展,中国电信市场发生了巨大的变化,请谈谈你现在的感受?中央巡视组

责任编辑:丁琼

热图点击